Random article ( of 1116 ) Latest updates

User Tools

Site Tools


content / mathematics / prime_numbers

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

Prime Numbers

Since all other whole numbers (except 0) can be produced by multiplying together primes – they must be considered fundamental.

(1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 &etc

There are an infinite number of primes - as proved by Euclid around 300B.C. ( Ref. ). Although billions of them have so far been found (nowadays via computational 'sieving' algorithms), they appear to be randomly distributed - but with some 'rules' - for example, they become more rare as the numbers get bigger. As yet there’s no proven mathematical method which can accurately predict where the next one will be.

Note: As at Oct. 2024. the largest known prime number (discovered via collaborative networked computer processing) has 41,024,320 digits (ref.)


Also see: The Riemann hypothesisplugin-autotooltip__plain plugin-autotooltip_bigThe Riemann hypothesis

- was proposed by Bernhard Riemann (1859), and is a conjecture about the distribution of the zeros of the Riemann zeta function.

The Riemann hypothesis asserts that all interesting solutions of the equation :

$$ {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}},} $$

lie on a certain vertical straight line.
and Legendre's Conjectureplugin-autotooltip__plain plugin-autotooltip_bigLegendre's Conjecture

Legendre's Conjecture concerns the distribution of Prime Numbers

It asks : "Is there is a prime number between n2 and (n + 1)2 for every positive integer n. squares?"

It was first presented by French mathematician Adrien-Marie Legendre in the early 1800s - and to date has neither been proved or disproved.
and Oppermann's conjectureplugin-autotooltip__plain plugin-autotooltip_bigOppermann's conjecture

Oppermann's Conjecture concerns the distribution of Prime Numbers.

It was first suggested in 1877, and has not been proved or disproved since then.

The conjecture states that : for every integer x > 1, there is at least one prime number between

Note: The true nature of randomnessplugin-autotooltip__plain plugin-autotooltip_bigRandom numbers

unknowable

"We can never decide for sure that a number is random, but what we can do is apply an increasing number of tests and treat our sequence of numbers as innocent until proved guilty."

Source : Prof. Colva Roney-Dougal, senior lecturer in Pure Mathematics at the University of St Andrews, speaking in
itself is also under discussion.

Importance Rating

THIS WEBSITE DOES NOT USE TRACKING, ADVERTISING, OR ANALYTICAL COOKIES OF ANY KIND.
All essential cookies (for login status etc) are automatically deleted at the end of the session.
(full details here)

Show another (random) article

Suggestions for corrections and ideas for articles are welcomed : Get in touch!


Further resources :