Random article ( of 1116 ) Latest updates

User Tools

Site Tools


content / mathematics / oppermann_conjecture

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

Oppermann's conjecture

Oppermann's Conjecture concerns the distribution of Prime Numbersplugin-autotooltip__plain plugin-autotooltip_bigPrime Numbers

Since all other whole numbers (except 0) can be produced by multiplying together primes โ€“ they must be considered fundamental.

(1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 &etc

There are an infinite number of primes - as proved by Euclid around 300B.C. (
.

It was first suggested in 1877, and has not been proved or disproved since then.

The conjecture states that : for every integer x > 1, there is at least one prime number between x(x โˆ’ 1) and x2, and at least another prime between x2 and x(x + 1).

Put non-mathematically "Is every pair of a square number and a pronic number (both greater than one) separated by at least one prime?"

See : Wikipedia


Also see : Legendre's Conjectureplugin-autotooltip__plain plugin-autotooltip_bigLegendre's Conjecture

Legendre's Conjecture concerns the distribution of Prime Numbers

It asks : "Is there is a prime number between n2 and (n + 1)2 for every positive integer n. squares?"

It was first presented by French mathematician Adrien-Marie Legendre in the early 1800s - and to date has neither been proved or disproved.

THIS WEBSITE DOES NOT USE TRACKING, ADVERTISING, OR ANALYTICAL COOKIES OF ANY KIND.
All essential cookies (for login status etc) are automatically deleted at the end of the session.
(full details here)

Show another (random) article

Suggestions for corrections and ideas for articles are welcomed : Get in touch!


Further resources :