User Tools

    To create and edit articles, please register and log-in

Main Menu : categories & index etc.

Main menu
Click categories to expand

A-Z listingplugin-autotooltip__plain plugin-autotooltip_bigA-Z listing

This is an alphabetical index of all content pages.

Other categories



Also see

Importance Ratings
Curator's rationale
AI Policy

Twitter feed 𝕏

Feeds + s.e.o. etc.
rss / xml feed
sitemap file
A-Z listing (archived)

Indexed under : Physics / Quantum Physics

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

'Strange' matter

'Normal' matter has atomic nuclei formed with 'up' and 'down'quarksplugin-autotooltip__plain plugin-autotooltip_bigQuarks

Following theoretical calculations, particle accelerator experiments in the 1970s confirmed that quarks are responsible for the internal structure of protons and neutrons. ( 3 quarks each, in different configurations, see :Electron / Quark charge balance).

. It's confirmed, however, that there are six types of quark - one of which is known as the 'strange' quark.

Multiple observations have shown that in isolation they spontaneously decay into 'up' quarks - in line with current theory.

In the mid 70s and early 80s, two nuclear physicists, Arnold Bodmer and Edward Witten proposed separately that it might be theoretically possible for stable matter to exist if its nuclei were built from roughly equal numbers of 'up', 'down' and 'strange' quarks.

This is the so-called Strange Matter Hypothesis.

Theoretical particles formed in this way have been given the name Strangelets - but, in theory, combinations of strange matter particles could be stable at any size, and it has been proposed that entire 'Neutron Stars' could be formed from strange matter.

To date, no strange matter has ever been observed - either in high-energy nuclear experiments or as a result of cosmic ray bombardment.

Nevertheless, many physicists agree on the theoretical possibility that it could exist.

Further technical details Rutgers University (holden)

( Note that Strange Matter has recently been proposed as a possible candidate for an explanation of Dark Matterplugin-autotooltip__plain plugin-autotooltip_bigDark Matter

"The nature of the dominant component of galaxies and clusters remains unknown.“

Source : Measuring the dark matter equation of state (Mon. Not. R. Astron. Soc. 415, L74–L77)"

In the 1930s, astronomical observations of galaxy rotations showed that the ou…

    Please share this page to help promote Wikenigma !

Dear reader : Do you have any suggestions for the site's content?

Ideas for new topics, and suggested additions / corrections for older ones, are always welcome.

If you have skills or interests in a particular field, and have suggestions for Wikenigma, get in touch !

Or, if you'd like to become a regular contributor . . . request a login password. Registered users can edit the entire content of the site, and also create new pages.

( The 'Notes for contributors' section in the main menu has further information and guidelines etc.)

Automatic Translation

You are currently viewing an auto-translated version of Wikenigma

Please be aware that no automatic translation engines are 100% accurate, and so the auto-translated content will very probably feature errors and omissions.

Nevertheless, Wikenigma hopes that the translated content will help to attract a wider global audience.

Show another (random) article

Further resources :